
      Disaster Advances                                                                                                                          Vol. 14 (8) August (2021) 

22 

Landslide Susceptibility Analysis using  
Gradient Boosting Models: A Case Study in  

Penang Island, Malaysia 
Gao Han1, Fam Pei Shan1*, Tay Lea Tien2 and Low Heng Chin3 

1. School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, MALAYSIA 

2. School of Electrical and Electronic Engineering, USM, Engineering Campus, Seberang Perai Selatan Nibong Tebal, Penang, 14300, MALAYSIA 

3. Research and Innovation Unit, Universiti Sains Malaysia, 11800 USM, Penang, MALAYSIA 

*fpeishan@usm.my 

 

Abstract 
Tree-based gradient boosting (TGB) models gain 

popularity in various areas due to their powerful 

prediction ability and fast processing speed. This study 

aims to compare the landslide spatial prediction 

performance of TGB models and non-tree-based 

machine learning (NML) models in Penang Island, 

Malaysia. Two specific instances of TGB models, 

eXtreme Gradient Boosting (XGBoost) and Light 

Gradient Boosting Machine (LightGBM) and two 

specific instances of NML models, artificial neural 

network (ANN) and support vector machine (SVM), are 

applied to make predictions of landslide susceptibility. 

Feature selection and oversampling techniques are 

considered to improve the prediction performance as 

well. The results are analyzed and discussed mainly 

based on receiver operating characteristic (ROC) 

curves as well as the area under the curves (AUC).  

 

The results show that TGB models give better 

prediction performance compared to NML models, no 

matter what the sample size is. The TGB models’ 

performances are improved when training with the 

dataset considering either feature selection or 

oversampling techniques. The highest AUC value of 

0.9525 is obtained from the combination of XGBoost 

and SMOTE. The landslide susceptibility maps (LSMs) 

produced by XGBoost and LightGBM can provide 

valuable information in landslide management and 

mitigation in Penang Island, Malaysia.  
 

Keywords: eXtreme Gradient Boosting, LightGBM, 

landslide susceptibility mapping, feature selection, 

oversampling techniques. 

 

Introduction  
Landslides are considered as one of the most hazardous 

natural disasters around the globe which may cause the 

losses of life and property.9,44 Landslide susceptibility 

analysis (LSA) is a popular and effective way to determine 

the possibility of landslide occurrence in a specific area and 

further reduces the losses. LSA mainly works on studying 

the relationship between the landslide conditioning factors 

and the characteristics of the recorded landslides using 

various types of models such as logistic regression,1 decision 

tree,2 artificial neural network (ANN)8,18 and support vector 

machine (SVM).4,19 Other review papers on the machine 

learning models of LSA are provided by Guzzetti et al23, 

Huabin et al26 and Gao et al.17 

 

In our previous landslide spatial research in Penang Island, 

various statistical and machine learning models are applied 

such as logistic regression, fuzzy logic, ANN and SVM.18,19 

The results showed that ANN and SVM outperformed 

among other models. Gradient boosting models are gaining 

more and more popularity in various areas due to its 

powerful prediction ability and fast processing speed.12 

Therefore, comparing the predicting performance between 

gradient boosting models and machine learning models such 

as ANN and SVM, is considered in this research.  

 

The models used in this research are classified as tree-based 

gradient boosting (TGB) models and non-tree-based 

machine learning (NML) models. The TGB models can be 

considered as a type of ensemble machine learning models 

which work to combine several decision trees to produce 

better predictive performance than a single decision tree 

classifier.  

 

The main idea of the ensemble models is to combine several 

weak learners which are slightly better than random guess to 

a strong learner, thus increasing the performance of the 

ensemble model.48 The main principle behind gradient 

boosting can be interpreted as an optimization algorithm on 

a suitable cost function.7 The TGB models such as eXtreme 

Gradient Boosting (XGBoost) and Light Gradient Boosting 

Machine (LightGBM) have shown powerful prediction 

performance in various fields as well as in machine learning 

competitions.12,33,46 Moreover, the tree-based ensemble 

models are more and more popular and show more 

satisfactory performance in recent LSA studies. 

 

Hong et al24 compared three ensemble models, namely, 

AdaBoost, Bagging and Rotation Forest, in landslide 

susceptibility assessment and obtained promising results in 

the Guangchang area, China. Bandara et al5 conducted the 

landslide research in two different study areas, Ratnapura 

district in Sri Lanka and Glenmalure in Ireland, using three 

tree-based ensemble models, namely, random forest, 

rotation forest and XGBoost. The results evaluated in terms 

of precision, recall and F-score were shown to be 

satisfactory. For the NML models, such as ANN and SVM, 

researchers have been using them to solve practical 
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applications for a comparatively long time and showed quite 

satisfactory results.6, 13, 37 Compared to NML models, TGB 

models are more capable of handling larger-scale data and 

have faster training speed and lower memory usage.31 

 

This study aims to compare the prediction performance 

between TGB and NML models in landslide spatial 

prediction area. Since each learning algorithm tends to suit 

some problem types better than others, the TGB and NML 

models are compared in this research to discover the most 

suitable model for the landslide data in Penang Island used 

to produce landslide susceptibility maps. Therefore, one of 

the objectives of this study is to discover which model 

among XGBoost, LightGBM, ANN and SVM is superior in 

predicting the landslide spatial prediction in Penang Island, 

Malaysia.  

 

Feature selection is a key step in data mining which can help 

reduce the dimension of the datasets and improve the 

models’ performance.21 Therefore, two feature selection 

techniques, namely, extra trees classifier (ETC) and random 

forest classifier (RFC), are considered to measure the feature 

importance. The features with high importance score would 

be selected to train the models. Thus, the second objective of 

this study is to determine whether the models’ prediction 

performances would be improved when combined with 

feature selection techniques. Furthermore, oversampling 

techniques are considered in this research as well. The third 

objective of this study is to assess the efficiency of the 

oversampling techniques. 

 

Research Area and Data Preparation 
The research area, Penang Island, is in the northwest of 

Peninsular Malaysia (Figure 1). To avoid duplicity, the 

detailed information about Penang Island such as the 

population, precipitation and geology can be referred to our 

previous research.18,19 

 

The landslide inventory map is also described in figure 1. It 

provides the location of 382 previous landslide occurrences 

in Penang Island that are mainly collected from the landslide 

inventory database, Geographic Information System (GIS) 

images and field survey was conducted from 1995 to 2009. 

A landslide occurrence in Penang Island is shown in figure 

2. 

 

Landslide influencing factors including six categorical 

(Aspect, Curvature, Geology, Soil type, Landuse, Rainfall) 

and five continuous (Elevation, Slope, Distance to drainage, 

Distance to road, Distance to fault) variables are considered 

for landslide susceptibility analysis. The sources and formats 

of the available data as well as the figures of the eleven 

landslide influencing factors can be referred to our previous 

studies.18,19 

 

 

Figure 1: The map of Penang Island 
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Methodology 
Two representative NML models, SVM and ANN and two 

representative TGB models, XGBoost and LightGBM, are 

considered to make predictions of landslide susceptibility in 

Penang Island, Malaysia. The description of landslide 

susceptibility modeling including SVM, ANN, XGBoost 

and LightGBM is shown in landslide susceptibility 

modelling. Three types of datasets are applied to train and 

validate the models with the sample size of 10,000, 20,000 

and 37,546 where the total number of landslide samples 

accounts for half of it.  

 

The receiver operating characteristic (ROC) curves as well 

as the area under the curves (AUC) are considered as the 

main metrics to evaluate the prediction performance of the 

models. Scalar metrics such as accuracy, recall, precision 

and F1_score are considered to evaluate the models’ 

performance as well. 

 

Landslide susceptibility modeling 

Support vector machine (SVM): As a popular supervised 

machine learning model, SVM is based on statistical 

learning theory and the structural risk minimization 

principle.45 The objective of SVM is to find a hyperplane 

with the maximum margin which can be expressed 

mathematically as: 

 

maximize:  
2

‖𝑤‖
 

subject to: 𝑦𝑖(𝑤𝑇𝑥 + 𝑏) ≥ 1 ,  𝑖 = 1,2, . . . , 𝑛, 

(1) 

 

where 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛) denotes the normal vector 

which determines the direction of the hyperplane and b is the 

displacement which determines the distance from the origin 

to the hyperplane. Figure 3 gives a typical SVM model. 

 

There are two fundamental principles of SVM when dealing 

with non-linear classification problems which are the 

calculation of optimal hyperplane and the selection of kernel 

function.47 A function can be regarded as a kernel function 

when it satisfies the Mercer’s Theorem.35 The commonly 

used kernel functions and their corresponding mathematical 

expressions are available in the research by Gao et al18 and 

Gao et al.19. As one of the most popular kernel functions, 

radial basis function (RBF) is used in this research according 

to the performance of previous studies.8,13,25,27,28,36,40  

 

 
Figure 2: Landslide occurrences in Penang Island 

 

 
Figure 3: A typical SVM 
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Artificial neural network (ANN) 
ANN is a popular technique used in regression and 

classification.30 Back propagation (BP) is the most 

outstanding algorithm recently.49 A typical ANN usually has 

three types of layers, namely, input layer, hidden layer(s) and 

output layer (Figure 4). The number of input neurons is 

usually determined by the number of input variables which 

are the landslide influencing factors in this research.3 The 

number of hidden neurons is usually determined by trial and 

error.22  

 

The main goal of an ANN is to build a data generating 

process which can generalize and predict outputs from 

inputs.3 The activation function plays an essential role in 

ANN models. Rectified Linear Unit (ReLU) and sigmoid 

functions are selected as the activation functions in the 

hidden layer and output layer respectively. Batch gradient 

descent (BGD), a commonly used optimization algorithm in 

machine learning and deep learning, is used to update the 

parameters in this research. 

 

eXtreme Gradient Boosting (XGBoost):  XGBoost is short 

term for eXtreme Gradient Boosting, which is a scalable tree 

boosting model proposed by Chen et al.12 It is an improved 

version of gradient boosting decision tree (GBDT).16 

Compared to GBDT, the users can specify the loss function 

in XGBoost. The base classifiers in XGBoost are CARTs 

with a single split, usually called a decision stump. 

XGBboost adopts level-wise learning algorithm to construct 

trees. The difference between level-wise and leaf-wise tree 

growing is displayed in figure 5. 

 

The predictive model of XGBoost can be expressed as: 

 

�̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖)𝐾
𝑘=1 ,  𝑖 = 1,2, . . . , 𝑛, (2) 

 

where 𝑥𝑖 and �̂�𝑖 denote the ith sample and the prediction 

result respectively. The parameter K is the total number of 

tree models. The objective function can be displayed as: 

𝑂(⋅) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖)𝑛
𝑖=1 + ∑ 𝛺(𝑓𝑘)𝐾

𝑘=1                                      (3) 

 

The left part in the objective function denotes the training 

loss. The less is the training loss, the better is the model 

performs. The right part denotes the complexity of the trees. 

The less is the model complexity, the higher is the general 

ability of the model. Since 𝑓𝑘 denotes the kth tree instead of 

a numerical vector, the optimization methods such as SGD 

are unavailable here. To find the best trees, additive training 

method was applied in XGBoost.11 Taylor expansion 

approximation is introduced in XGBoost to make user-

defined loss function available and achieve a unity in the 

form. Taking Taylor expansion of the objective function, we 

can obtain the new expression as follows: 

 

𝑂(⋅) = ∑ [𝑙(𝑦𝑖 , �̂�𝑖
(𝑡−1)

) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)]𝑛
𝑖=1 + 𝛺(𝑓𝑡) + 𝐶 (4) 

 

where 𝑔𝑖 = 𝜕�̂�(𝑡−1)𝑙(𝑦𝑖 , �̂�(𝑡−1)) and ℎ𝑖 =

𝜕2
�̂�(𝑡−1)𝑙(𝑦𝑖 , �̂�(𝑡−1)) denote the first and second derivative of 

𝑙(𝑦𝑖 , �̂�(𝑡−1)) with respect to �̂�(𝑡−1) respectively. The 

complexity of a tree in XGBoost is defined as: 

 

𝛺(𝑓𝑡) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1                                                 (5) 

 

where w and T denote the weight of the leaf node and the 

number of leaf nodes in the tree respectively. 

 

Light Gradient Boosting Machine (LightGBM): 

LightGBM, proposed by Ke et al31 is an improved version of 

gradient boosting decision trees (GBDTs) algorithm. The 

main idea behind GBTDs is to combine the predictions of 

multiple decision trees by adding them together. LightGBM 

adopts a leaf-wise leaf growth strategy with max depth 

limitation rather than level-wise, which is more prone to 

overfitting but is more flexible.33 LightGBM implements a 

histogram-based algorithm to speed up the training process 

and reduce memory consumption.  

 

 
Figure 4: An ANN model 
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Figure 5: (a) level-wise and (b) leaf-wise algorithm 

 

 
Figure 6: The histogram algorithm 

 

The basic idea of the histogram algorithm is to discretize 

successive floating-point feature values into k integers and 

construct a histogram with k bins. The working process of 

histogram algorithm is displayed in figure 6. It works by 

traversing the original data and then accumulating them in 

the histogram in descending order. 

 
LightGBM models aim to reduce the complexity 

of histogram building by undersampling the data including 

the number of instances and the number of features using the 

newly proposed techniques: gradient-based one-side 

sampling (GOSS) and exclusive feature bundling (EFB) 

respectively.31 The mathematical expressions of information 

gains of splitting feature j before and after applying GOSS 

are defined as equations (6) and (7) respectively. 
 

𝑉𝑗|𝑇(𝑑) =
1

𝑛𝑇
(

(∑ 𝑔𝑖{𝑥𝑖∈𝑇:𝑥𝑖𝑗≤𝑑} )2

𝑛𝑙|𝑇
𝑗

(𝑑)
+

(∑ 𝑔𝑖{𝑥𝑖∈𝑇:𝑥𝑖𝑗>𝑑} )2

𝑛𝑟|𝑇
𝑗

(𝑑)
)                   (6) 

 

𝑉𝑗(𝑑) =
1

𝑛
(

(∑ 𝑔𝑖𝑥𝑖∈𝐴𝑙
+

1−𝑎

𝑏
∑ 𝑔𝑖𝑥𝑖∈𝐵𝑙

)2

𝑛𝑙
𝑗

(𝑑)
+

(∑ 𝑔𝑖𝑥𝑖∈𝐴𝑟 +
1−𝑎

𝑏
∑ 𝑔𝑖𝑥𝑖∈𝐵𝑟 )2

𝑛𝑟
𝑗

(𝑑)
)       (7) 

 

where T denotes the training dataset on a fixed note of the 

decision tree. The negative gradient of the loss function with 

respect to the output of the model is denoted as 𝑔𝑖. The 

datasets 𝐴𝑙 and 𝐴𝑟 denote the subsets with larger gradient 

instances in the left and right leaf nodes respectively. 𝐵𝑙 and 

𝐵𝑟 are the subsets with small gradient instances in the left 

and right leaf nodes after a random sampling. The coefficient 

1-𝑎

𝑏
 is applied to normalize the sum of the gradients over B 

where a and b denote the percentage of large gradient 

instances and the percentage of small gradient instances after 

removing the large gradient instances.31  
 

The computation cost is greatly reduced and the training 

accuracy is not lost much after using GOSS.31 The main idea 

behind EFB is to bundle exclusive features into a single 

feature, namely, EFB. Since the features never take non-zero 

values at the same time, EFB algorithm speeds up the model 

training process without hurting the accuracy.31 

 

Feature selection: Feature selection plays an essential role 

in data mining which can help reduce the dimension of the 

datasets and further improve the models’ performance in 

some cases.21 Two methods of feature selection, RFC and 

ETC, are applied into the datasets in this research.  
 

RFC is a commonly used feature selection method in various 

fields.19,29,32,34,38,43 The working principle of RFC is made 

available by Gao et al.19 ETC is a popular feature selection 

method as well which is like RFC. The major difference 

between ETC and RFC is the construction of the selection 

trees. On the one hand, ETC splits nodes by randomly 

choosing cut points while RFC chooses the optimum split 

points. On the other hand, all the available training samples 

are used to grow the tree for ETC rather than a bootstrap 

replica14 which is used to draw samples without replacement 

in RFC.20 
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Oversampling Techniques: Oversampling techniques 

SMOTE10 and SCOTE, are applied in this research. SMOTE 

is a popular oversampling technique to generate synthetic 

samples by operating in feature space instead of data space. 

SCOTE is a new oversampling technique proposed earlier.19 

The main objective of the two oversampling methods is to 

effectively augment the landslide occurrence samples. 

 

Dataset building: The data used in this research is in pixel 

format. The total number of pixels is 3,004,631 with 

2,984,386 non-landslide pixels and 20,245 landslide pixels 

where the number of 1,472 landslide pixels are considered 

as non-landslide pixels after a first-round sampling 

described in the previous research.19 Therefore, the number 

of landslide pixels is being changed to 18,773. Three groups 

of datasets shown in table 1 are built to train models 

including the dataset with 10,000, 20,000 and 37,546, all 

with equal ratio, for landslide and non-landslide pixels. The 

random undersampling method is used to select landslide 

and non-landslide samples. 

 

Evaluation methods: Scalar metrics such as accuracy, recall 

and precision are widely used in evaluating models’ 

performances. Precision and recall can be combined into the 

F-score. The detailed definitions and mathematical 

expressions are provided by Gao et al.18,19 ROC curve is a 

type of highly popular and effective method to evaluate the 

binary classifier’s overall performance. It is a probability 

curve which shows the ability of the classification model to 

rank the positive samples relative to the negative samples.  

 

The value of the area under the ROC curve (AUC) is a 

commonly used indicator to measure the prediction 

performance ranging from 0.5 to 1. It measures how much 

the models can distinguish between different classes. The 

higher is the value of AUC, the better is the prediction 

performance. As a threshold-independent metric, AUC 

value is highly recommended in the model evaluation 

procedure in this research.15  

 

Results and Discussion 
The multicollinearity analysis is applied to discover 

redundant factors in this research which is an essential step 

in LSMs.41 The results of multicollinearity analysis are 

displayed in table 2 which show that no factors should be 

removed in this research based on the metrics of tolerance 

(Tol) and variance inflation factor (VIF).39 When the Tol 
value of an influencing factor is less than 0.2 or the VIF value 

is larger than 5, it indicates that the multicollinearity problem 

may exist and the factor should be removed from the 

model.39 

 

All the experiments in this research are conducted using 

Python 3.60 in a Windows 10 server with an Intel Core i5 

2.40 GHz processor. The datasets are split into training and 

validation datasets with the ratio of 80:20 for all models. The 

overall datasets with 3,004,631 pixels are considered to 

produce the LSMs using ArcGIS. The data are normalized 

using min-max normalization before entering the models. 

RBF function is selected as the kernel function for SVM 

models.  

Table 1 

The datasets used in this research 
 

Dataset  No. of landslide 

samples 

No. of non-landslide 

samples 

No. of pixels No. of factors 

Data 1  5,000 5,000 10,000 11 

Data 2  10,000 10,000 20,000 11 

Data 3 18,773 18,773 37,546 11 

 

Table 2 

The results of multicollinearity analysis 
 

Landslide factors Data 1 Data 2 Data 3 

Tol VIF Tol VIF Tol VIF 

Aspect .707 1.415 .719 1.391 .715 1.400 

Curvature .670 1.493 .686 1.458 .679 1.472 

Geology .515 1.943 .524 1.908 .523 1.911 

Soil .686 1.459 .674 1.485 .678 1.475 

Landuse .844 1.184 .820 1.220 .824 1.214 

Precipitation .616 1.624 .615 1.626 .618 1.619 

Height .672 1.487 .665 1.505 .665 1.504 

Distance to drainage .752 1.329 .769 1.301 .760 1.316 

Distance to road .647 1.546 .649 1.541 .643 1.556 

Distance to fault .747 1.338 .745 1.343 .752 1.330 

Slope .631 1.584 .645 1.550 .642 1.559 
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The parameter gamma (γ) and penalty parameter C are 

determined using grid search method. The combination of 

(γ, C) is set to (3, 20). ReLU function is used in the hidden 

layer of the ANN models. The learning rate (α) is an 

important parameter to tune which is determined as 0.01 in 

this research. The hidden layer size is set to 25, 30 and 40 

for data 1, data 2 and data 3 respectively. The parameter 

tuning for TGB models is a key procedure as well and is 

mainly based on ‘trial and error’ method. The learning rate 

and the maximum depth of the trees are considered to tune 

in XGBoost and LightGBM models. Learning rate (namely, 

eta for XGBoost) is used to control the weighting of new 

trees added to the model. The max_depth is used to control 

the depth of the tree to avoid overfitting. The parameter 

settings are shown in table 3. 

 

The values for scalar metrics such as accuracy, recall, 

precision and F1_score and AUC values for the original 

datasets and the newly generated datasets are shown in table 

4. The corresponding ROC curves are displayed in figure 7. 

Even though they are considered as the less important 

metrics for model validation in this research, they provide 

some useful information as well, especially the F1_score 

which can be interpreted as a weighted average of the 

precision and recall. In table 4, the highest value of F1_score 

is 0.094 for the XGBoost model trained using data 3.  

 

Based on the ROC values, the results show that the larger is 

the sample size, the better is the model performance which 

is suitable for all four models used in the research. For 

example, the ROC values for XGBoost are 0.9072, 0.9116 

and 0.9227 for data 1, data 2 and data 3 respectively. The 

highest AUC values for XGBoost and LightGBM are 0.9227 

and 0.9187 respectively. For ANN and SVM models, the 

AUC values are all less than 0.900, except for the SVM 

model trained using data 3 with the AUC of 0.9019. Overall, 

TGB models show better performance than NML models in 

this landslide research. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7: The ROC curves of (a) XGBoost; (b) LightGBM; (c) SVM; (d) ANN 
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Table 3 

The parameter settings for TGB models 
 

Model Dataset used Parameter setting 

XGBoost Data 1 eta=0.2; max_depth=10; others=default 

Data 2 eta=0.2; max_depth=10; others=default 

Data 3 eta=0.3; max_depth=10; others=default 

LightGBM Data 1 learning rate=0.2; max_depth=10; others=default 

Data 2 learning rate=0.2; max_depth=10; others=default 

Data 3 learning rate=0.2; max_depth=10; others=default 

 

Table 4 

The results of the models trained using the datasets without feature selection 
 

Modelling Dataset Accuracy (%) Recall Precision F1_ 

score 

AUC 

Training Validation Overall 

XGBoost Data 1 95.31 88.10 87.67 0.718 0.038 0.073 0.9072 

Data 2 95.58 91.20 89.95 0.692 0.045 0.085 0.9116 

Data 3 93.89 91.45 90.65 0.723 0.050 0.094 0.9227 

LightGBM Data 1 92.38 86.45 86.77 0.739 0.037 0.070 0.9076 

Data 2 92.37 88.52 87.50 0.745 0.039 0.074 0.9132 

Data 3 90.55 88.89 88.10 0.752 0.041 0.078 0.9187 

SVM Data 1 85.18 85.05 81.23 0.809 0.028 0.055 0.8749 

Data 2 85.98 85.70 81.32 0.843 0.030 0.057 0.8920 

Data 3 86.06 86.75 83.10 0.856 0.033 0.064 0.9019 

ANN Data 1 71.93 70.30 75.87 0.720 0.020 0.039 0.8295 

Data 2 72.27 71.00 76.69 0.728 0.021 0.040 0.8362 

Data 3 74.87 73.18 76.63 0.764 0.022 0.042 0.8467 

 
Feature selection methods RFC and ETC are considered to 

measure the importance of the eleven influencing factors. 

Moreover, sub-data sets constructed based on the results of 

feature selection are used to train and validate the TGB 

models. Before applying the feature selection methods, a 

total of eleven influencing factors are considered for model 

training and validation. The results of feature importance 

using RFC and ETC is displayed in tables 8 and 9 

respectively.  

 

Three experiments are conducted both for RFC and ETC 

respectively. The average values are considered to determine 

the feature importance. For example, the important scores of 

the factor Height obtained by RFC are 0.2201, 0.2204 and 

0.2203 for the first, second and third time respectively. 

Therefore, the final importance score is 0.2203 which is 

obtained by calculating the average of the three scores.  

 

According to the results shown in tables 5 and 6, the two 

least important variables are both curvature and soil type. 

The biggest difference between RFC and ETC is the order of 

the three most important variables. For RFC, the most three 

important features are height, fault and road in a descending 

order while for ETC, the order of the most three important 

features is fault, road and height. According to the feature 

importance results, three new datasets are generated with 

nine (Data3_F9), six (Data3_F6) and three (Data3_F3) 

factors from data 3 with the largest sample size respectively. 

The details of the newly generated datasets are shown in 

table 7. 

 

The results for the TGB models trained with the subdatasets 

are shown in table 8. The ROC curves are displayed in figure 

8. According to the results, the AUC values for XGBoost 

and LightGBM trained using Data3_F9 are 0.9494 and 

0.9299 respectively which are both higher than the largest 

AUC value 0.9227 obtained from the XGBoost trained using 

data 3. For the results obtained by Data3_F6, the AUC 

values are comparable with those AUC values without 

feature selection.  

 

Based on tables 5 and 6, the sum of the importance score of 

the first six important factors is around 92% for both ETC 

and RFC. It indicates that the removed five factors contribute 

only 8% feature importance. The models trained with the 

dataset with only three most important factors show poor 

performance with the AUC values of 0.8335 and 0.8400 for 

TGBoost and LightGBM respectively. 

 

After combining the two TGB models with feature selection 

methods, the results are improved based on the AUC values. 

What to do next is to combine the TGB models with 

oversampling methods, SMOTE and SCOTE based on the 

original data 3. The new datasets generated with 

oversampling methods are described in table 9. The number 

of landslide samples doubled from 18773 to 37546. The total 

number of samples are 75192 after considering 

oversampling techniques.
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Table 5 

The feature importance using RFC 
 

Factors 1st 2nd 3rd Average Top 3 Top 6 Top 9 

Height 0.2201 0.2204 0.2203 0.2203 0.6542 0.9175 0.9897 

Fault 0.2198 0.2185 0.2187 0.2190 

Road 0.2148 0.2152 0.2148 0.2149 

Drainage 0.1063 0.1062 0.1060 0.1062 0.3458 

Slope 0.0966 0.0961 0.0962 0.0963 

Aspect 0.0605 0.0607 0.0612 0.0608 

Rainfall 0.0319 0.0321 0.0324 0.0321 0.0825 

Geology 0.0227 0.0223 0.0227 0.0226 

Landuse 0.0169 0.0182 0.0175 0.0175 

Curvature 0.0090 0.0090 0.0089 0.0090 0.0103 

Soil type 0.0014 0.0014 0.0015 0.0014 

        *The three terms Fault, Road and Curvature stand for distance to fault, distance to road and distance to curvature, respectively. 

 

Table 6 

The feature importance using ETC 
 

Factors 1st 2nd 3rd Average Top 3 Top 6 Top 9 

Fault 0.2114 0.2119 0.2123 0.2119 0.5953 0.9228 0.9880 

Road 0.1969 0.1962 0.1965 0.1965 

Height 0.1859 0.1877 0.1872 0.1869 

Drainage 0.1334 0.1344 0.1338 0.1339 0.4047 

Slope 0.1284 0.1284 0.1286 0.1285 

Aspect 0.0664 0.0647 0.0643 0.0651 

Rainfall 0.0327 0.0325 0.0330 0.0327 0.0772 

Landuse 0.0171 0.0171 0.0169 0.0170 

Geology 0.0157 0.0151 0.0157 0.0155 

Curvature 0.0094 0.0092 0.0090 0.0092 0.0120 

Soil type 0.0028 0.0028 0.0028 0.0028 

       *The three terms Fault, Road and Curvature stand for distance to fault, distance to road and distance to curvature, respectively. 

 

Table 7 

The new datasets after feature selection 
 

Datasets  No. of 

Factors 

No. of 

Samples 

Features included Sum of 

importance score 

(RFC/ETC) 

Data3_F9 9 37546 Fault, Road, Height, Drainage, Slope, 

Aspect, Rainfall, Landuse, Geology 

0.9897/0.9880 

Data3_F6 6 37546 Fault, Road, Height, Drainage, Slope, 

Aspect 

0.9175/0.9228 

Data3_F3 3 37546 Fault, Road, Height 0.6542/0.5953 

 

Table 8 

The results of the models trained using the datasets with feature selection 
 

Modelling Dataset Accuracy (%) Recall Precision F1_ 

score 

AUC 

Training Validation Overall 

XGBoost Data3_F9 99.60 96.58 95.81 0.097 0.624 0.167 0.9494 

Data3_F6 96.70 92.81 91.97 0.052 0.627 0.095 0.9141 

Data3_F3 84.95 83.17 79.19 0.022 0.675 0.042 0.8335 

LightGBM Data3_F9 98.50 95.14 94.29 0.073 0.639 0.131 0.9299 

Data3_F6 97.23 93.17 92.37 0.049 0.564 0.091 0.9061 

Data3_F3 87.53 85.90 82.86 0.024 0.608 0.046 0.8400 
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Table 9 

The new datasets after oversampling techniques 
 

Dataset  No. of landslide 

samples 

No. of non-

landslide 

samples 

No. of pixels Data source 

Data3_SMOTE 37,546 37,546 75,192 Original+SMOTE 

Data3_SCOTE 37,546 37,546 75,192 Original+SCOTE 

 

Table 10 

The results of the models trained using the datasets with oversampling 
 

Modelling Dataset Accuracy (%) Recall Precision F1_ 

score 

AUC 

Training Validation Overall 

XGBoost Data3_SMOTE 99.98 98.15 97.25 0.563 0.134 0.216 0.9525 

Data3_SCOTE 99.99 97.01 94.37 0.713 0.081 0.146 0.9446 

LightGBM Data3_SMOTE 96.60 95.40 94.05 0.676 0.074 0.133 0.9378 

Data3_SCOTE 95.07 93.22 91.27 0.761 0.056 0.105 0.9385 

 

(a) 

 
(b) 

Figure 8: The ROC curves of (a) XGBoost; (b) LightGBM based on Data3_F9. 

 

 

 
Figure 9: The ROC curves of LGB models with oversampling methods 
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The results after using oversampling techniques are 

displayed in table 10 and the ROC curves are displayed in 

figure 11. The results are further improved based on the 

AUC values after applying the oversampling methods to 

augment the landslide samples. The optimal performance 

(AUC=0.9525) occurred when combining the XGBoost and 

SMOTE method. The other AUC values around 0.94 are 

satisfactory as well. 

 

XGBoost and LightGBM are applied to produce LSMs since 

they show better prediction performance. Figs. 10-12 display 

the LSMs produced based on the XGBoost and LightGBM 

model trained using the original datasets (Data 2 and Data 3) 

and newly generated data3_F9 respectively. The landslide 

susceptibility index (LSI) values for XGBoost and 

LightGBM models are sorted in descending order and then 

classified into four susceptibility categories: ‘Very High [0-

10%]’, ‘High [10-20%]’, ‘Medium [20-60%]’ and ‘Low [60-

100%]’ using natural breaks method. The susceptible area 

denotes the sum of the percentages of ‘Very High’ and 

‘High’ category, namely, the first 20% of the LSI values of 

each dataset after being sorted in descending order.  

 

The susceptible area in LSMs is mainly located in the middle 

mountainous region and the northwestern area, which is 

highly consistent with the landslide inventory map displayed 

in figure 1. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10: The LSMs produced by (a) XGBoost trained based on Data 2; (b) LightGBM trained based on Data 3;  

(c) LightGBM trained based on Data 2; (d) LightGBM trained based on Data 3 
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(a) 

 
(b) 

Figure 11: The LSMs produced by (a) XGBoost trained based on Data3_F9;  

(b) LightGBM trained based on Data3_F9 

 

The verification analysis of the LSMs is a key step in 

landslide spatial area which is usually conducted by 

comparing the prediction results with the existing landslide 

data based on two key assumptions.42 The first one is that the 

landslide occurrences are related to the spatial distribution. 

Another one is that landslides are controlled by some 

influencing factors which can be analyzed statistically or 

empirically. The verification results for the two TGB models 

trained using the original datasets (Data 2 and Data 3), newly 

generated datasets (Data3_F3, Data3_F6 and Data3_F9) and 

the datasets (Data3_SMOTE and Data3_SCOTE) generated 

by oversampling techniques are displayed in figs. 13-15 

respectively.  

 

Based on the values of susceptible area in figure 14, the 

susceptible area XGBoost and LightGBM models both 

trained using data 3 successfully predicted account for 

88.3% and 87.9% of the previous landslides respectively. 

When considering the newly generated samples to train the 

TGB models, the verification results are improved as well. 

The susceptible area for all models can cover more than 90% 

of the previous landslides. In particular, the susceptible area 

predicted by the XGBoost models trained using data3_F9 

covers 94.8% of the landslide occurrences. Moreover, the 

susceptible area predicted by the XGBoost model trained 

using data3_SMOTE attains to 95.3% that is the highest 

value among the models. Two TGB models (XGBoost and 

LightGBM) and two NML models (SVM and ANN) are 

compared to produce the landslide susceptibility maps in 

Penang Island, Malaysia. XGBoost and LightGBM are both 

specific implementations of GBDT which is the initial 

version of gradient boosting model.16 They share the 

advantage of GBDT models which are less likely overfitting 

and more likely generalizing data well.31 The results suggest 

that XGBoost and LightGBM show better prediction 

performance compared to SVM and ANN.  

 

Feature selection methods based on the feature importance 

are considered even though the feature dimension is not that 

high. However, the results are improved by removing two 

least important variables (Curvature and Soil type) from the 

dataset (Data 3). It indicates that the two variables may 

provide redundant information to the models. The total 

importance of the two variables accounts for 1% (1.03% for 

FRC and 1.2% for ETC). When continuing removing 

variables to six and three, the results show that the models’ 

performance deteriorates. In other words, some useful 

information is removed. The results further got improved 

after considering the oversampling techniques which denote 

that the newly generated data can provide useful and 

efficient information for the model training. 

 

There are several limitations of this research. First, the 

random undersampling technique is used to select landslide 

and non-landslide samples. For the non-landslide samples, 

only a minority of them are selected to train the models. 

During the undersampling, the distribution of the non-

landslide samples is easily being changed. The stratified 

sampling deserves a try for future work. Secondly, the 

parameter tuning process for machine learning models plays 

a highly important role in the model training process. For 

XGBoost and LightGBM models, they have various types of 

parameters, both continuous and categorical, to tune. 

Theoretically, it is impossible to find out the optimum 

parameter combination for the models.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12: The LSMs produced by (a) XGB+SMOTE; (b) XGB+SCOTE;  

(c) LightGBM+SMOTE;  

(d) LightGBM+SCOTE 

 

Conclusion 
In this research, two tree-based gradient boosting models, 

namely, LightGBM and XGBoost and two non-tree-based 

machine learning models, namely, ANN and SVM are 

applied to the landslide spatial prediction research in Penang 

Island, Malaysia. Moreover, two feature selection methods, 

namely, ETC and RFC, are applied to gauge the feature 

importance. Two oversampling techniques are considered in 

this research as well. A total of six datasets with different 

sample sizes or generated using feature selection methods is 

used to train the models. Three of them, namely, data 1, data 

2 and data 3, are made of original samples and the remaining 

three datasets, namely, data3_F9, data3_F6 and data3_F3, 

are part of data 3.  

 

The results show that the TGB models outperform the NML 

models based on the AUC values, no matter which dataset is 

used to train.
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Figure 13: The verification results for XGBoost and LightGBM models based on Data 2 and Data 3 

 

 
Figure 14: The verification results for XGBoost and LightGBM models based on Data3_F9 

 

 
Figure 15: The verification results for XGBoost and LightGBM models with oversampling methods
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Moreover, the performance of the TGB models is improved 

after combining with the feature selection methods. 

Therefore, two research problems, namely, which model 

performs best among ANN, SVM, XGBoost and LightGBM 

and whether the feature selection methods can improve the 

performance of the models, are solved well. The LSMs are 

produced using LightGBM and XGBoost models trained 

using data 2, data 3 and data3_F9. The verification analysis 

results suggest that more than 85% and 90% of the previous 

landslide occurrences are successfully predicted by the maps 

produced by TBG models without and with feature selection 

techniques respectively. It indicates that all the maps can 

provide useful information to the decision makers and the 

feature selection and oversampling techniques can help 

improve the performance of model prediction in this 

research. Furthermore, the maps produced using XGBoost 

and SMOTE are highly recommended to be applied in the 

landslide mitigation and management in Penang Island, 

Malaysia. 
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